Python Basics

Prof. Gheith Abandah

Reference

* Wes McKinney, Python for Data Analysis: Data Wrangling

with Pandas, NumPy, and Ipython, O’Reilly Media, 2nd
Edition, 2018.

* Material: https://github.com/wesm/pydata-book
* Vanderplas, Jacob T. A Whirlwind Tour of Python. O'Reilly
Media, 2016.

https://www.oreilly.com/programming/free/files/a-
whirlwind-tour-of-python.pdf

* https://github.com/jakevdp/WhirlwindTourOfPython/

https://github.com/wesm/pydata-book
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://github.com/jakevdp/WhirlwindTourOfPython/

Outline

* Quick Python Syntax * Defining and Using

* Variables and Objects Functions

» Operators * Objects and Classes

e Built-In Types: Simple Values ° Errors and Exceptions
e Built-In Data Structures * Iterators

e Control Flow * List Comprehensions

* Generators

Quick Python Syntax

* Comments are marked by #.

e Quotation marks (" ') can
also be used to enter
comments.

e Use \ to extend a statement
on the next line.

* Semicolon ; can optionally
terminate a statement.

X += 2 # shorthand for x = x + 2

Comments

Multi-line comment often
used in documentation

"Single-1line Comment™

lower = []; upper = []

Quick Python Syntax

* In Python, code blocks
are denoted by
indentation.

* Four spaces are usually
used.

for 1 in range(10):
if 1 < midpoint:
lower.append(i)
else:
upper .append(i)

* Which code snippet
always prints x?

>>> 1f X < 4: >>> 1f x < 4:
y =X * 2 - y = X * 2
print(x) ... print(x)

Quick Python Syntax

* Parentheses are for:

* Grouping
e Calling

In [5]: 2 * (3 + 4)
Out [5]: 14

In [6]: print('first value:', 1)
first value: 1

In [7]: print('second value:', 2)

second value: 2

Outline

* Defining and Using

e Variables and Objects Functions

» Operators * Objects and Classes

* Built-In Types: Simple Values * Errors and Exceptions
* Built-In Data Structures * Iterators

e Control Flow * List Comprehensions

* Generators

Variables and Objects

* Python variables are pointers
to objects.

 Variable names can point to y
objects of any type. X

1 # x 15 an integer
"hello’ # now x is a string
[1, 2, 3] # now x 1s a list

Variables and Objects

* |f we have two In [2]: x = [1, 2, 3]
variable names Yo
pointing to the In [3]: print(y)
same mutable [1, 2, 3]
object, then In [4]: x.append(4) # append 4 to the list pointed to by x
Changing one will print(y) # y's list is modified as well!
change the other |[1; 2, 3, 4]
as welll In [5]: x = 'something else’
print(y) # vy is unchanged
[1, 2, 3, 4]

Variables and Objects

* Numbers, strings, and other simple types are immutable.

In [6]: x = 10
y = X
X += 5 #add 5 to x's value, and assign it to x
print("x =", x)
print("y =", y)

15
10

Variables and Objects

* Everything is an object

* Object have attributes and methods
accessible through the dot syntax (.)

In [10]: L = [1, 2, 3]
L.append(100)
print(L)

[1, 2, 3, 100]

In [7]:

out [7]:
In [8]:

Out [8]:
In [9]:

Out [9]:

X = 4
type(x)

int
X = 'hello'
type(x)

str

X = 3.14159
type(x)

float

11

Outline

* Defining and Using

Functions
» Operators * Objects and Classes
* Built-In Types: Simple Values * Errors and Exceptions
* Built-In Data Structures * Iterators
e Control Flow * List Comprehensions

* Generators

12

Arithmetic Operators

a + b Addition Sum of a and b

a - b Subtraction Difference of a and b
a * b Multiplication Product of a and b
a / b Truedivision Quotientof aand b

a // b Floordivision Quotient of a and b, removing fractional parts

a % b Modulus Remainder after division of a by b
a ** b Exponentiation a raised to the power of b

-a Negation The negative of a

+3 Unary plus a unchanged (rarely used)

*>»» a =5

*»»» b =3

»»>»a /b
1.666666666b6666667
>»>>»a f/ b

1

>»ra % b

2

13

Bitwise Operators

g | a] 2| 1]|4mweight
0lojo]ojo
l1]j]0j0jo0Oj1

Operator Name Description 2 o]o]1]o
3|1]0j0]1]1
a & b Bitwise AND Bits defined in both a and b alo[1]o]o
a | b BitwiseOR Bitsdefined in a or b or both Z BRE
a ~ b Bitwise XOR Bits defined in a or b but not both : e
a << b Bitshiftleft Shift bits of a left by b units 3 1 :2 ;
a >> b Bitshiftright Shift bits of a right by b units i : *:; ;
~a Bitwise NOT Bitwise negation of a Bl1]ifoa
141111 |o
1511 |11 1
> a =1
>>> b = 2
>»>print(a &b , a | b, ab,b<<a,b3>»a, ~b)
@3341 -3

14

Comparison Operators

Operation Description

e Return Boolean values True or a ==b aequatob
False a !=b anotequaltob

a<b alessthan b
a >b agreaterthanb
a <= b alessthanorequaltob

a >= b aqgreaterthanorequaltob

*>»>r» a =1

»2»>» b = 2

>»>>print(a==b, al=b , a<b, a>b)
False True True False

15

Assignment Operators

* Assignment is evaluated from
left to right.

> L =7 = k = 18

>>»» print(1 , J ,
16 18 18

k)

* There is an augmented
assignment operator

corresponding to each of the

b a *= b
//=b a %= b a **=

+= b a -

|= a "=b a <<=

a /=b
b a & b

b a >>=b

binary arithmetic and bitwise

operators. >>> a =2
>>> b = 10

>>> b 4= a
»>>> print(
2 12

» b))

16

Boolean Operators

* The Boolean operators
operate on Boolean values:
e and
* or
* hot

e Can be used to construct
complex comparisons.

In [15]:

out [15]:
In [16]:
out [16]:
In [17]:

Out [17]:

X =4
(x < 6) and (x > 2)

True

(x > 10) or (x % 2 == 0)
True

not (x < 6)

False

17

Identity and Membership Operators

Operator Description

a is b True if a and b are identical objects
a 1s not b Trueif aand b are not identical objects
a in b True if a is a member of b

a not in b Trueif aisnota memberof b

In [24]: 1 in [1, 2, 3]
Out [24]: True
In [25]: 2 not in [1, 2, 3]

Out [25]: False

In [19]:

In [20]:

Out [20]:

In [21]:

Out [21]:

In [22]:

Out [22]:

In [23]:

Out [23]:

ais not b

True

18

Outline

* Defining and Using
Functions

* Objects and Classes

* Built-In Types: Simple Values * Errors and Exceptions

* Built-In Data Structures * Iterators
e Control Flow * List Comprehensions

* Generators

19

Python Scalar Types

Type Example Description
int x =1 Integers (i.e., whole numbers)
float X = 1.0 Floating-point numbers (i.e., real numbers)

complex x = 1 + 2j Complex numbers (i.e., numbers with a real and imaginary part)
bool X = True Boolean: True/False values
str x = "abc' String: characters or text

NoneType x = None Special object indicating nulls

»»» print(int('1') , float(1l) , len(str(1@)))
1 1.8 2

20

Integers and Floats

* Integers are variable-precision, no overflow is possible.

»»» 2 FF 08
1237948039285380274899124224

* The floating-point type can store fractional numbers. They
can be defined either in standard decimal notation or in
exponential notation.

In [5]: x = 0.000005 In [6]: x = 1400000.00
y = 5e-6 y = 1.4e6
print(x == y) print(x == y)

True True

Strings

* Strings in Python are created with single or double quotes.
* The built-in function 1en() returns the string length.
* Any character in the string can be accessed through its index.

»>»» s1 = "H1 "

»>»» 52 = '"Python’

>»>» print(s1 _ + s2 , len(s2) , 3 * s1 , s2[@])
Hi Python 6 Hi H1 Hi P

22

None and Boolean

* Functions that do not return value return None.
* None variables are evaluated to False.

* The Boolean type is a simple type with two possible values:
True and False.

* VValues are evaluated to True unless they are None, zero or
empty.

»»> print(bool(1.5) , bool(®) , bool(None) , bool([]))
True False False False

Outline

e Built-In Data Structures
e Control Flow

* Defining and Using
Functions

* Objects and Classes

* Errors and Exceptions
* |terators

* List Comprehensions
* Generators

24

Built-In Data Structures

* There are four built in Python data structures.

Type Name Example Description

list [1, 2, 3] Ordered collection

tuple (1, 2, 3) Immutable ordered collection

dict {'a':1, 'b':2, 'c':3} Unordered (keyvalue) mapping
set {1, 2, 3} Unordered collection of unique values

25

o »>»» L =[2, 3, 5, 7]
LIStS >>» L.append(11)
>>> print(len(L) , L[@] , L[4])
e List are ordered and mutable. e L= (1. 16] = L

> print{ L)

* A list can hold objects of any (15, 16, 2, 3. 5, 7, 11]

type. >»> L.sort()
>>» print{ L)
* Python uses zero-based [2, 3, 5, 7, 11, 15, 16]
: : >»» L = [1, "two', 3.14, [0, 3, 5]]
indexing. s
* Elements at the end of the list (e, 3, 5]
. . Far L[—E]
can be accessed with negative 3.14
numbers, starting from -1. ; 1 , ; \ :

2 3 5 711

Lists

* Slicing is a means of accessing
multiple values in sub-lists.

[start : end+1l : inc]
* Negative step reverses the list.

* Both indexing and slicing can be used
to set elements as well as access
them.

»» L =112, 3, 5, 7, 11]
>»> L[:]

[2, 3, 5, 7, 11]

>»> L[:3]

[2, 3, 5]

>»> L[2:]

[5, 7, 11]

»»» L[1:4]

[3, 5, 7]

»»» L[::2]

[2, 5, 11]

»»» L[::-1]

[11, 7, 5, 3, 2]

»»» L[@] = 1o

»»» L[1:3] = [28, 30]
x> L

[1ee, 20, 38, 7, 11]

27

Tuples

* Tuples are similar to lists, but are immutable.

* Can be defined with or without parentheses ().

* Functions return multiple values as tuples.

FrF
FrF
FrE
3 3
FrE
e
(1,
FrE
e
1 4

t = (1, 2, 3)

t =1, 2, 3

print(t[2], len(t))

x = 8.25

x.as_integer_ratio()

4)

numerator, denominator = x.as_integer ratio()

print(numerator, denominator)

28

Dictionaries

* Dictionaries are flexible mappings of keys to values.

* They can be created via a comma-separated list of
key:value pairs within curly braces.

»»>d = {'Name':"'Sami’, "Weight":75}

»»» d["Length'] = 1.75

»»> d

{'Name’: 'Sami', 'Weight': 75, 'Length': 1.75}
»>>»>» d["Name']

"Sami’

29

Sets

* Sets are unordered collections of unique items.
* They are defined using curly brackets { }.

* Set operations include union, intersection, difference and
symmetric difference.

>»» primes = {2, 3, 5, 7}

*»»» odds = {1, 3, 5, 7, 9}

»>>> primes | odds # Union

{1, 2, 3, 5, 7, 9;}

>»» primes & odds # Intersection

13, 5, 7}

>»>» primes - odds # Differences

12}

>»> primes ™ odds # Symmetric difference

11, 2, 9}

Outline

e Control Flow

* Defining and Using
Functions

* Objects and Classes

* Errors and Exceptions
* |terators

* List Comprehensions
* Generators

31

Conditional Statements: if, elif, and
else

* 1f statements in Python have optional elif and else
parts.

In [1]: x = -15

if x == 0:
«—print(x, "is zero")
elif x > 0:
print(x, "is positive")
elif x < 0:
print(x, "is negative")
else:
print(x, "is unlike anything I've ever seen...")

-15 1s negative

for Loops

* The for loop is repeated for each index returned by the
iterator after in.

In [2]: for N in [2, 3, 5, 7]:
«— print(N, end=" ') # print all on same line

2 357

* The range() object is very useful in for loops.

In [3]: for 1 in range(10):
print(i, end=" ")

123456789

33

for Loops

* The range(start, end+1, inc) has default zero start and

unit increment.

In [4]: # range from 5 to 10

out [4]: [5, 6, 7, 8, 9]

list(range(5, 10))

In [5]:

range from @ to 10 by 2
list(range(0, 10, 2))

Out [5]: [0, 2, 4, 6, 8]

34

while Loops

* The while loop iterates as long as the condition is met.

In [6]: 1 =0
while 1 < 10:

«— print(i, end=' ")
1 +=1

0123456789

break and continue: Fine-Tuning Your

Loops

* The continue statement skips the remainder of the current
loop, and goes to the next iteration.

In [7]: for n in range(20):

ifn%2 ==0:
continue
print(n, end='

135791113 15 17 19

check if n is even

)

Prints odd
numbers

36

break and continue: Fine-Tuning Your
Loops

* The break statement breaks out of the loop entirely.

In [8]: a, b
amax
L = [

0, 1
100

—_ I 1l

while True:
(a, b) = (b, a + b)
if a > amax:
break
L.append(a)

List all Fibonacci
numbers up to 100.

print(L)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

37

Outline

* Defining and Using
Functions

* Objects and Classes

* Errors and Exceptions
* |terators

* List Comprehensions
* Generators

38

Defining Functions

* Functions are defined with the def statement.

* The following function returns a list of the first N Fibonacci

numbers.

 Calling it:

In [4]: def fibonacci(N):
—L =[] o
a, b=20,1
while len(L) < N:
a, b=Db, a+ b
L.append(a)
return L

In [5]:

Out [5]:

fibonacci(10)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

39

Default Argument Values

* You can have default values for arguments.

def fibonacci(N, a=0, b=1):
L =[]
while len(L) < N:
a, b=b, a+b
L.append(a)
return L

* It can be called with our without the optional args.

fibonacci(10)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fibonacci(10, 0, 2)

(2, 2, 4, 6, 10, 16, 26, 42, 68, 110]

40

*args and **kwargs: Flexible Arguments

* Functions can be defined using *args and **kwargs to

capture variable numbers of arguments and keyword

arguments.

In [11]: def catch all(*args, **kwargs):
print("args =", args)
print("kwargs = ", kwargs)

In [12]: catch_all(1, 2, 3, a=4, b=5)

— Tuple
args = (1, 2, 3)Ae—”””””

kwargs = {'a': 'h' - 5}<// Dictionary

.‘l‘

In [13]: catch _all('a', keyword=2)

args = ('a’,)
kwargs = {'keyword': 2}

Outline

* Objects and Classes

* Errors and Exceptions
* |terators

* List Comprehensions
* Generators

42

Objects and Classes

* Python is object-oriented programming language.
* Objects bundle together data and functions.
* Each Python object has a type, or class.
* An object is an instance of a class.
* Accessing instance data:
object.attribute name
* Accessing instance methods:
object.method name(parameters)

43

String Objects

e String objects are instances of class str.

name = input("Please enter your name: ")

print("Hello " + name.upper() + ", how are you?")

Please enter your name: Sami
Hello SAMI, how are you?

* String objects have many useful methods
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

String Methods

>»> s = " Hi "
>>> s.strip()
IHiI

>>> "Age: {0}, Weight: {1}'.format(20, 70)
"Age: 20, Weight: 70

>>> s = 'This is a string'
>>> s.find('is"')
2

>>> s.replace('a’', 'the')
'This is the string'’

45

String Objects

s = 'The cat\'s tail \n is \t long.'

print(s)
* Accept the escape character
\\ The cat's tail
) is long.

S= IO o‘o“‘_?l
print(s)

* Unicode encoded. O 55 Ly

s utf8 = s.encode('utf-8")
print(s_utf8)

b'\xd8\xa8\xd8\xa7\xd9\x8a\xd8\xab\xd9
\x88\xd9\x86"

46

Date and Time Objects

* The built-in Python
datetime module provides
datetime, date, and time
types.

* Such objects can be
formatted and accept - and
+ operands.

from datetime import datetime, date, time
dt = datetime(1999, 8, 16, 8, 30, 0)
print(dt.day)

16

dt2 = datetime(2000, 8, 16, 8, 30, 0)
delta = dt2 - dt

dt3 = dt2 + delta

print(dt3.strftime('%d/%m/%Y %H:%M"))

17/08/2001 08:30

47

File Objects

* Files can be opened for read, write or append.

f = open('myfile.txt’', 'w')
f.write('Line 1\n'")
f.write('Line 2\n')
f.close()

f = open('myfile.txt', 'r'")
for line in f:

print(line.strip())
f.close()

Line 1
Line 2

48

Classes

* New class types can be defined using class keyword.

class Animal(object):
def _init (self, name='Animal'): # Constructor
print('Constructing an animal!")
self.name = name

if name == 'Cat':
self.meows = True # Attribute
else:

self.meows = False
super(Animal, self). init_ ()

def does_meow(self): # Method
return self.meows

Constructing an animal!

cat = Animal('Cat’) It meows True

print('It meows ', cat.does_meow())

Outline

* Errors and Exceptions
* |terators

* List Comprehensions
* Generators

50

Runtime Errors

1. Referencing an undefined
variable

2. Unsupported operation
3. Division by zero

4. Accessing a sequence element
that doesn’t exist

In [1]: print(Q)

In [2]: 1 + "abc'

In [3]: 2/ O

In [4]: L =1T[1, 2, 3]
L[1000]

51

Catching Exceptions: try and except

* Runtime exceptions can be handled using the try..except
clause.

In [6]: try:
print("let's try something:")
X =1/ 0 # ZeroDivisionError
except:
print("something bad happened!")

let's try something:
something bad happened!

try..except..else..finally

* Python also support else and finally

In [23]: try:

print("try something here")
except:

print("this happens only if it fails")
else:

print("this happens only i1f i1t succeeds")
finally:

print("this happens no matter what")

try something here
this happens only if it succeeds
this happens no matter what

53

Outline

* |terators
* List Comprehensions
* Generators

54

Iterators

* [terators are used in for loops and can be used using
next()

In [1]: for 1 in range(10):
print(i, end=" ")

©12345678289

In [4]: I = iter([2, 4, 6, 8, 10])
In [5]: print(next(I))

2

In [6]: print(next(I))

4

Iterators

* The range iterator

* lterating over lists

e enumerate iterator

In [1]: for 1 in range(10):
print(i, end=" ")

©12345678289

In [2]: for value in [2, 4, 6, 8, 10]:

do some operation
print(value + 1, end=" ")

357911

print(i, val)

2w N E O
= 00 O &= M

In [14]: for 1, val in enumerate(L):

56

Outline

* List Comprehensions
* Generators

57

List Comprehensions

* A way to compress a list-building for loop into a single short,

readable line.
* Syntax: [exgr for vgr in iterable]

o~

In [3]: [n b 2 for n Ln range(12)]

out [3]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

In [1]: [1 for 1 im range(20) if 1L % 3 > 0]

Qut [1]: [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

In [4]: [(i, j) for 1 in range(2) for j in range(3)]

out [4]: [(e, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

58

List Comprehensions

* Lists comprehensions can be used to construct sets with no
duplicates.

In [10]: {a % 3 for a in range(1000)}

out [10]: {0, 1, 2}

e Or dictionaries

In [11]: {Qip**z for n in range(6)}

Out [11]: {0: @, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

59

Outline

* Generators

60

Generators

A list is a collection of values, while a generator expression is

a recipe for producing values.

In [5]: G = (n ** 2 for n in range(12))
for val in G:
print(val, end=" ")

© 149 16 25 36 49 64 81 100 121

61

Generators

* A generator function uses yield to yield a sequence of

values.

In [19]: def gen _primes(N):
"""Generate primes up to N"""
primes = set()
for n in range(2, N):

if all(n % p > 0 for p in primes):

primes.add(n)
yield n

Get a sequence from
the generator

print(*gen_primes(70))

2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

62

Homework

* Solve the homework on Python Basic Programming

63

Summary

* Quick Python Syntax * Defining and Using

* Variables and Objects Functions

» Operators * Objects and Classes

e Built-In Types: Simple Values ° Errors and Exceptions
e Built-In Data Structures * Iterators

e Control Flow * List Comprehensions

* Generators

64

