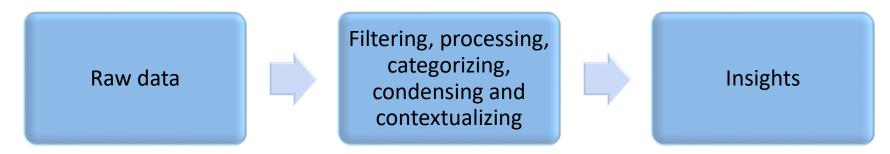

Introduction to Big Data

Prof. Gheith Abandah

Reference

Chapter 1: Introduction to Big Data



- Arshdeep Bahga and Vijay Madisetti, Big Data Science and Analytics: A Hands-On Approach, 2019.
 - Web site: http://www.hands-on-books-series.com/

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

What is Analytics?

• Processes, technologies, frameworks and algorithms to extract meaningful insights from data.

- Goals of the analytics task:
 - To **predict** something
 - To find patterns in the data
 - To find relationships in the data

Types of Analytics

Descriptive Analytics Diagnostic Analytics Prescriptive Analytics Predictive Analytics (What happened?) (What can we do to make it (Why did it happen?) (What is likely to happen?) happen?) - Reports - Queries - Forecasts - Planning - Alerts - Data Mining - Simulations - Optimization Generalized N-Body **Graph-theoretic Basic Statistics** Linear Algebraic Optimization **Alignment Problems** Integration Problem Computations Computations - Mean - Minimization - Bayesian - Matching - Distances - Linear Algebra - Graph Search - Median Inference between data sets - Maximization - Kernels - Linear Regression - Betweenness - Variance - Linear - Expectations (text, images, - Similarity between - PCA - Centrality - Counts - Markov Chain sequences) **Programming** pairs of points - Commute - Top-N - Quadratic Monte Carlo - Hidden Markov - Nearest distance - Distinct **Programming** Model Neighbor - Shortest Path - Gradient Descent - Clustering

- Minimum

Spanning Tree

- Kernel SVM

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

What is Big Data?

 Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is difficult to store, manage, process and analyze the data using traditional databases and data processing tools.

Every minutes:

- Facebook users share nearly 4.16 million pieces of content
- Twitter users send nearly 300,000 tweets
- Instagram users like nearly 1.73 million photos
- YouTube users upload 300 hours of new video content
- Apple users download nearly 51,000 apps
- Skype users make nearly 110,000 new calls
- Amazon receives 4300 new visitors
- Uber passengers take 694 rides
- Netflix subscribers stream nearly 77,000 hours of video

What is Big Data?

- Big data analytics deals with collection, storage, processing and analysis of this massive-scale data.
- Specialized tools and frameworks are required for big data analysis.
- Big data tools and frameworks have distributed and parallel processing architectures and can leverage the storage and computational resources of a large cluster of machines.
- Big data analytics involves several steps:
 - data cleansing
 - data munging (or wrangling)
 - data processing and visualization

What is Big Data?

- Some examples of big data are listed as follows:
 - Data generated by social networks including text, images, audio and video data
 - Click-stream data generated by web applications such as e-Commerce to analyze user behavior
 - Machine sensor data collected from sensors embedded in industrial and energy systems for monitoring their health and detecting failures
 - Healthcare data collected in electronic health record (EHR) systems
 - Logs generated by web applications
 - Stock markets data
 - Transactional data generated by banking and financial applications

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

Characteristics of Big Data

- 1. Volume: Big data is a form of data whose volume is so large that it would not fit on a single machine
- 2. Velocity: Data arrives at very high velocities.
- Variety: Big data comes in different forms such as structured, unstructured or semi-structured, including text data, image, audio, video and sensor data.
- 4. Veracity: Veracity refers to how accurate is the data. To extract value from the data, the data needs to be cleaned to remove noise.
- 5. Value: Refers to the usefulness of data for the intended purpose.

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

1. Web

- Web analytics
- Performance monitoring
- Ad targeting & analytics
- Content recommendations

2. Financial

- Credit risk modeling
- Fraud detection

3. Healthcare

- Epidemiological surveillance
- Patient similarity-based decision intelligence application
- Adverse drug events prediction
- Detecting claim anomalies
- Evidence-based medicine
- Real-time health monitoring

4. Internet of Things

- Intrusion detection
- Smart parking
- Smart roads
- Structural health monitoring
- Smart irrigation

5. Environment

- Weather monitoring
- Air pollution monitoring
- Noise pollution monitoring
- Forest fire detection
- River floods detection
- Water quality monitoring

6. Logistics & Transportation

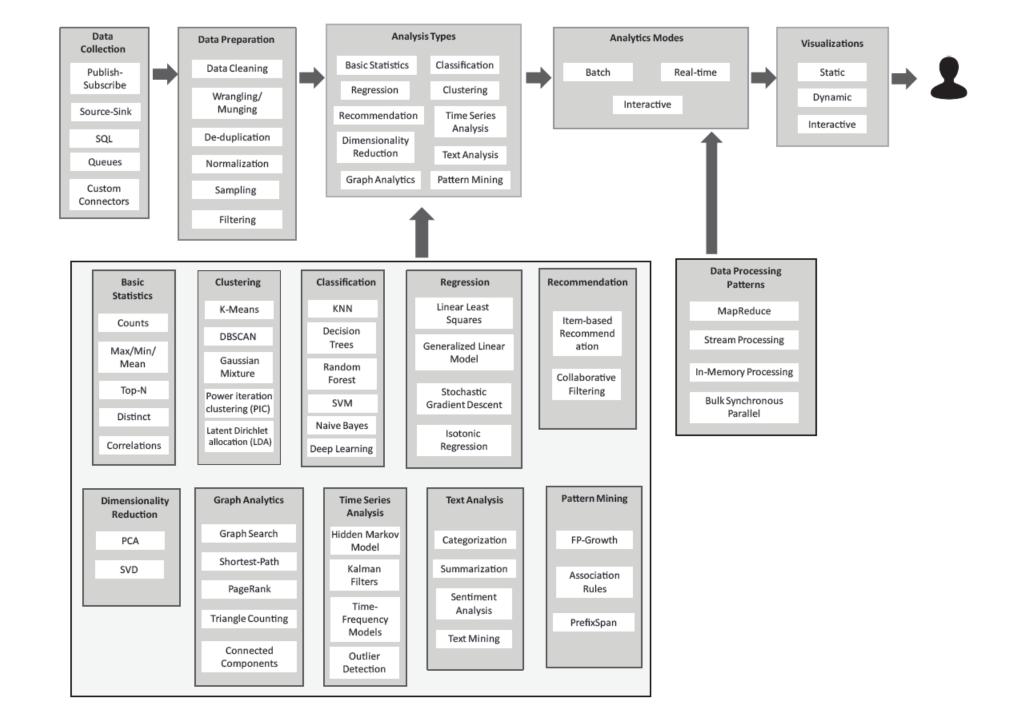
- Real-time fleet tracking
- Shipment monitoring
- Remote vehicle diagnostics
- Route generation & scheduling
- Hyper-local delivery
- Cab/taxi aggregators

7. Industry

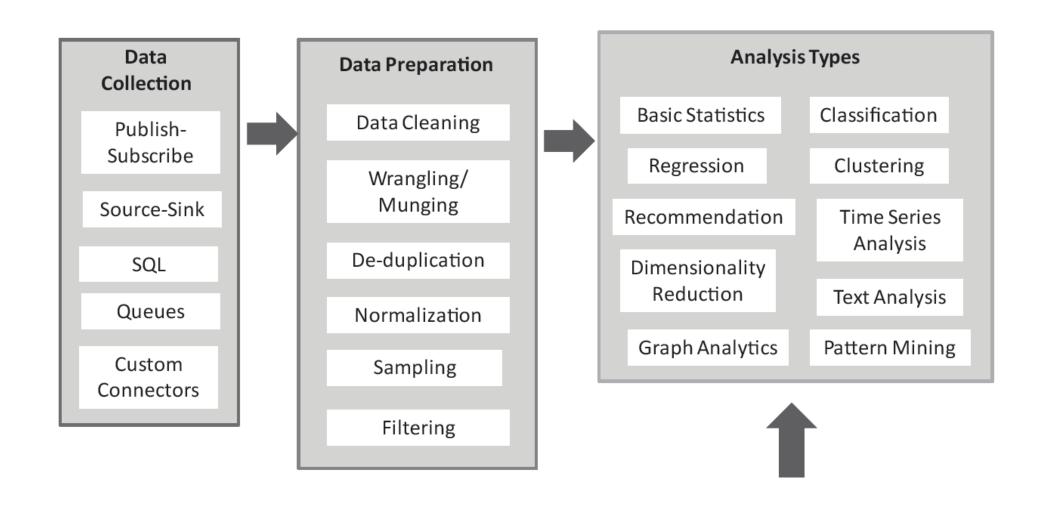
- Machine diagnosis & prognosis
- Risk analysis of industrial operations
- Production planning and control

8. Retail

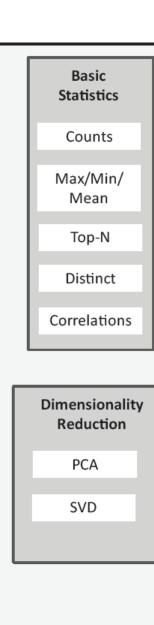
- Inventory management
- Customer recommendations
- Store layout optimization
- Forecasting demand

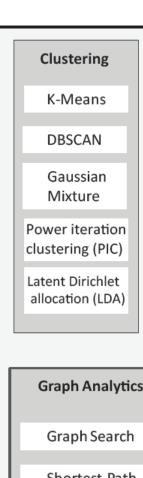

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

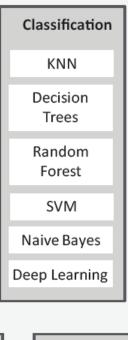
Analytics Flow for Big Data

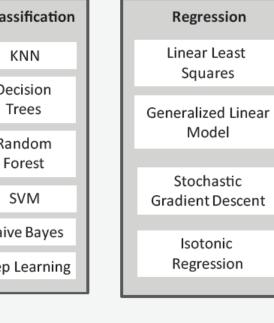

1. Data Collection

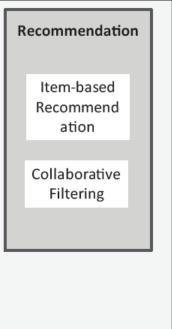
2. Data Preparation

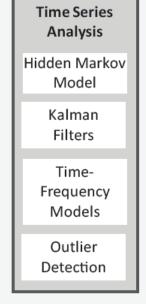

- Corrupt records, missing values, duplicates, inconsistent abbreviations, inconsistent units, typos and incorrect spellings, incorrect formatting
- 3. Analysis
- 4. Visualization

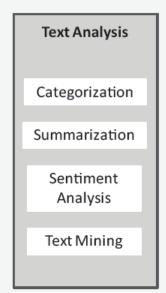


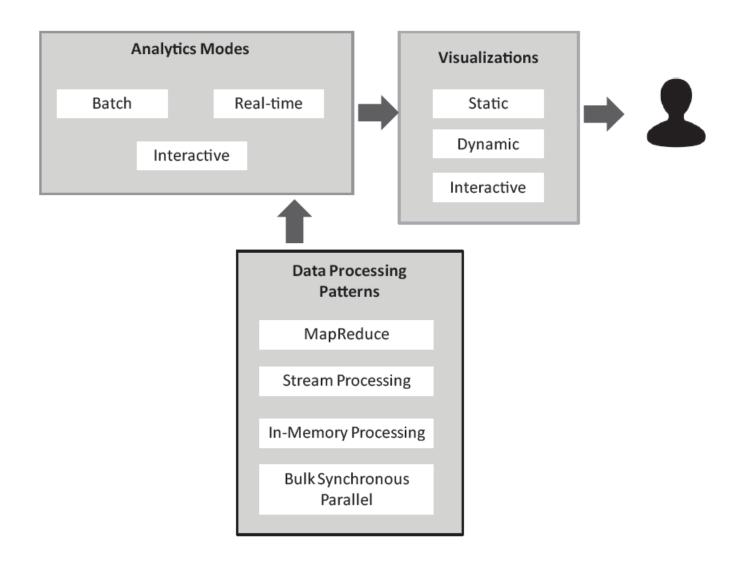

Data Collection, Preparation and Analysis




Analysis Types







Analytics and Visualization Modes

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

Big Data Stack Interactive Querying Ch-9 Analytic SQL (Hive, Serving Databases, BigQuery, Spark SQL, Web Frameworks, Batch Analysis Ch-7,11 **Data Access** Redshift) Visualization Connectors Ch-5 Frameworks Ch-10,12 DAG MapReduce Raw Data Publish-(Spark) (Hadoop) Subscribe NoSQL (Kafka, Amazon (HBase, Logs Cassandra, Kinesis) Workflow Script DynamoDB, Web/App Scheduling (Pig) MongoDB) Connectors Sensors Servers Source-Sink (Oozie) (Flume) Records SQL Machine Search (MySQL) Learning SQL (Solr) (Spark Mlib, H2O) (Sqoop) Databases Web Frameworks Queues Streams Real-time Analysis Ch-8 (Django) (RabbitMQ, ZeroMQ, Stream In-Memory REST MQ, (Spark **Processing** Visualization Amazon SQS) Streaming) (Storm) Frameworks (Lightning, Custom pyGal, Connectors Data Storage Ch-6 Seaborn) (REST, WebSocket, Distributed NoSQL AWS IoT, Filesystem (HBase) Azure IoT Hub) (HDFS)

24

1. Raw Data Sources

- 1. Logs generated by web applications and servers for performance monitoring
- Transactional data generated by applications such as eCommerce, banking and financial
- 3. Social media data generated by social media platforms
- 4. Databases: structured data residing in relational databases
- Sensor data generated by Internet of Things (IoT) systems
- 6. Clickstream data generated by web applications which can be used to analyze browsing patterns of the users
- 7. Surveillance data: Sensor, image and video data generated by surveillance systems
- Healthcare data generated by Electronic Health Record (EHR) and other healthcare applications
- 9. Network data generated by network devices such as routers and firewalls

2. Data Access Connectors

- 1. Publish-Subscribe Messaging is a communication model that involves publishers, brokers and consumers. E.g., Apache Kafka and Amazon Kinesis.
- 2. Source-Sink Connectors allow efficiently collecting, aggregating and moving data from various sources into a centralized data. E.g., Apache Flume.
- 3. Database Connectors can be used for importing data from relational database management systems into big data storage. E.g., Apache Sqoop.

2. Data Access Connectors

- 4. Messaging Queues are useful for push-pull messaging where the producers push data to the queues and the consumers pull the data from the queues. E.g., RabbitMQ, ZeroMQ, RestMQ and Amazon SQS.
- 5. Custom Connectors can be built based on the source of the data and the data collection requirements. Some examples of custom connectors include custom connectors for collecting data from social networks, and connectors for Internet of Things (IoT). E.g., REST, WebSocket, MQTT, and IoT connectors such as AWS IoT and Azure IoT Hub.

3. Data Storage

- The data storage block in the big data stack stores the data collected from the raw data sources using the data access connectors
- Includes
 - 1. Distributed file systems, e.g., Hadoop Distributed File System (HDFS)
 - 2. Non-relational (NoSQL) databases

4. Batch Analytics Frameworks

- Hadoop-MapReduce is a framework for distributed batch processing of big data. Its programming model is used to develop batch analysis jobs which are executed in Hadoop clusters.
- 2. Pig is a high-level data processing language which makes it easy for developers to write data analysis scripts which are translated into MapReduce programs by the Pig compiler.
- 3. Oozie is a workflow scheduler system that allows managing Hadoop jobs. With Oozie, you can create workflows which are a collection of actions (such as MapReduce jobs).

4. Batch Analytics Frameworks

- 4. Apache Spark is an open-source cluster computing framework for data analytics. Spark includes various high-level tools for data analysis such as Spark Streaming for streaming jobs, Spark SQL for analysis of structured data, MLlib, and GraphX for graph processing.
- 5. Apache Solr is a scalable and open-source framework for searching data.
- 6. Machine Learning: Spark MLlib is the Spark's machine learning library which provides implementations of various machine learning algorithms. H2O is an open-source predictive analytics framework which provides implementations of various machine learning algorithms.

5. Real-time Analytics Frameworks

- 1. Apache Storm is a framework for distributed and fault-tolerant real-time computation. Storm can be used for real-time processing of streams of data. Storm can consume data from a variety of sources such as publish-subscribe messaging frameworks (such as Kafka or Kinesis), messaging queues (such as RabbitMQ or ZeroMQ) and other custom connectors.
- 2. Spark Streaming is a component of Spark which allows analysis of streaming data such as sensor data, click stream data, and web server logs. The streaming data is ingested and analyzed in microbatches. Spark Streaming enables scalable, high throughput and fault-tolerant stream processing.

6. Interactive Querying Systems

- 1. Spark SQL enables interactive querying and is useful for querying structured and semi-structured data using SQL-like queries.
- 2. Apache Hive is a data warehousing framework built on top of Hadoop. It provides an SQL-like query language called Hive Query Language, for querying data residing in HDFS.
- 3. Amazon Redshift is a fast, massive-scale managed data warehouse service. It specializes in handling queries on datasets of sizes up to a petabyte or more parallelizing the SQL queries across all resources in the Redshift cluster.
- 4. Google BigQuery is a service for querying massive datasets. It allows querying datasets using SQL-like queries.

7. Serving Databases, Web & Visualization Frameworks

- MySQL is one of the most widely used Relational Database
 Management System (RDBMS) and is a good choice to be used as a
 serving database for data analytics applications where the data is
 structured.
- 2. Amazon DynamoDB is a fully-managed, scalable, high-performance NoSQL database service. It is an excellent choice for a serving database for data analytics applications as it allows storing and retrieving any amount of data and the ability to scale up or down the provisioned throughput.

7. Serving Databases, Web & Visualization Frameworks

- 3. Cassandra is a scalable, highly available, fault tolerant open-source non-relational database system.
- 4. MongoDB is a document oriented non-relational database system. It is powerful, flexible and highly scalable database designed for web applications and is a good choice for a serving database for data analytics applications.
- 1. Django is an open-source web application framework for developing web applications in Python. It is based on the Model-Template-View architecture and provides a separation of the data model from the business rules and the user interface.

7. Serving Databases, Web & Visualization Frameworks

- 1. Lightning is a framework for creating web-based interactive visualizations.
- 2. Pygal is an easy-to-use Python charting library which supports charts of various types.
- **3. Seaborn** is a Python visualization library for plotting attractive statistical plots.

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

Data collection tasks

- If high-velocity data is to be ingested at real-time, then a distributed publish-subscribe messaging framework such as Apache Kafka or Amazon Kinesis can be used.
- If the data is to ingested in **bulk** (such as log files), then a **source-sink** such as Apache Flume can be used.
- For ingesting data from **relational databases**, a framework such as Apache Sqoop can be used.
- Custom connectors can be built based on REST, WebSocket or MQTT.

Data Collection

Analysis Type	Framework (Mode)
Publish-Subscribe	Kafka, Kinesis
Source-Sink	Flume
SQL	Sqoop
Queues	SQS, RabbitMQ, ZeroMQ, RESTMQ
Custom Connectors	REST, WebSocket, MQTT

Data Preparation

Analysis Type	Framework
Data Cleaning	Open Refine
Data Wrangling	Open Refine DataWrangler
De-Duplication	Open Refine, Pig, Hive, Spark SQL
Normalization Sampling, Filtering	MapReduce, Pig, Hive, Spark SQL

Basic Statistics

Analysis Type	Framework (Mode)
Counts, Max, Min, Mean, Top-N, Distinct	Hadoop-MapReduce (Batch), Pig (Batch), Spark (Batch), Spark Streaming (Realtime), Spark SQL (Interactive), Hive (Integrative), Storm (Real-time)
Correlations	Hadoop-MapReduce (Batch), Spark Mlib (Batch)

Clustering

Analysis Type	Framework (Mode)
K-Means	Hadoop-MapReduce (Batch), Spark Mlib (Batch & Real-time) H2O (Batch)
DBSCAN	Spark (Batch)
Gaussian Mixture	Spark Mlib (Batch)
PIC	Spark Mlib (Batch)
LDA	Spark Mlib (Batch)

Classification

Analysis Type	Framework (Mode)
KNN	Spark Mlib (Batch, Realtime)
Decision Trees	Spark Mlib (Batch, Realtime)
Random Forest	Spark Mlib (Batch, Realtime), H2O (Batch)
SVM	Spark Mlib (Batch, Realtime)
Naïve Bayes	Spark Mlib (Batch, Realtime), H2O (Batch)
Deep Learning	H2O (Batch)

Regression

Analysis Type	Framework (Mode)
Linear Least Squares	Spark Mlib (Batch, Realtime)
Generalized Linear Model	H2O (Batch)
Stochastic Gradient Descent	Spark Mlib (Batch, Realtime)
Isotonic Regression	Spark Mlib (Batch, Realtime)

Graph Analytics

Analysis Type	Framework (Mode)
Graph Search	Spark GraphX (Batch)
Shortest-Path	Spark GraphX (Batch)
PageRank	Spark GraphX (Batch)
Triangle Counting	Spark GraphX (Batch)
Connected Components	Spark GraphX (Batch)

Time Series Analysis

Analysis Type	Framework (Mode)
Kalman Filter	Spark (Realtime)
Time Frequency Models	Spark (Realtime)
Outlier Detection	Storm (Realtime), Spark (Batch, Realtime)

Dimensionality Reduction

Analysis Type	Framework (Mode)
SVD	Spark Mlib (Batch)
PCA	Spark Mlib (Batch), H2O (Batch)

Recommendation

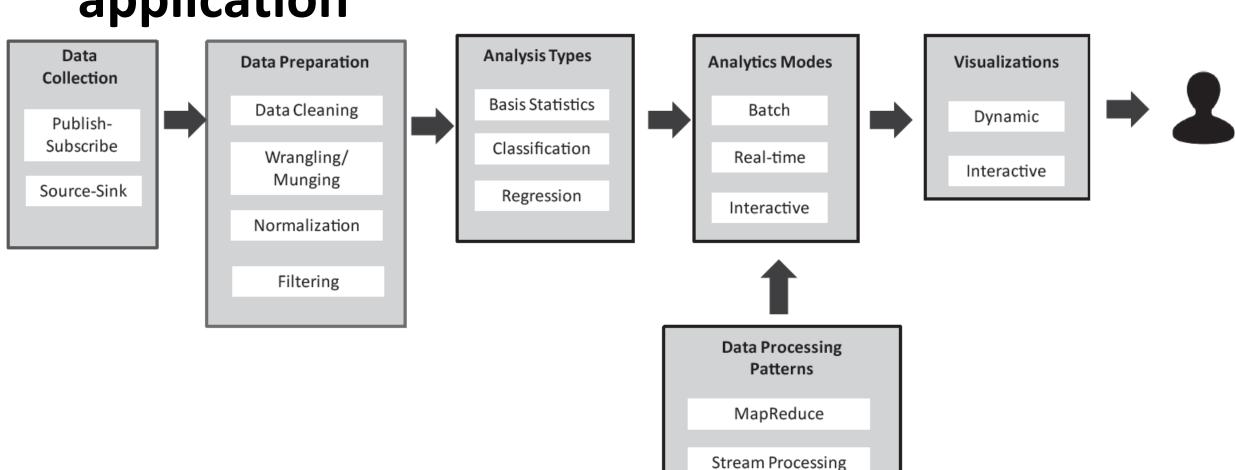
Analysis Type	Framework (Mode)
Item-bases	Spark Mlib
Recommendation	(Batch)
Collaborative	Spark Mlib
Filtering	(Batch)

Text Analysis

Analysis Type	Framework (Mode)
Categorization	Hadoop-MapReduce (Batch), Storm (Realtime), Spark (Batch, Realtime)
Summarization	Spark (Batch)
Sentiment Analysis	Storm (Realtime), Spark (Batch, Realtime)
Text Mining	Storm (Realtime), Spark (Batch, Realtime)

Pattern Mining

Framework (Mode)
Spark Mlib (Batch)
Spark Mlib (Batch)
Spark Mlib (Batch)


Visualization

Analysis Type	Framework (Mode)
Web Frameworks	Django, Flask
SQL Databases	MySQL
NoSQL Databases	Hbase, DynamoDB, Cassandra, MongoDB
Visualization Frameworks	Lightning, pyGal, Seaborn

Outline

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

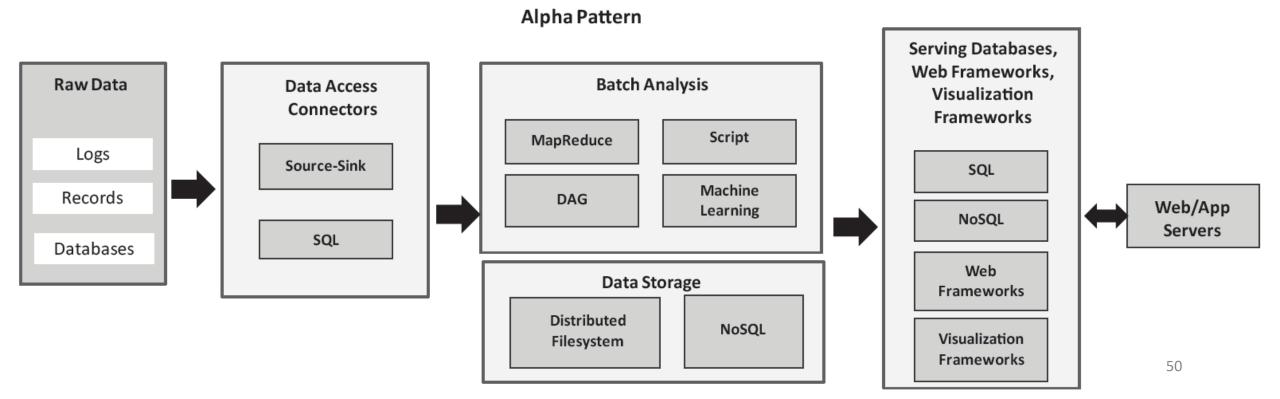
Analytics flow for weather data analysis application

In-Memory Processing

Using Big Data stack for weather data

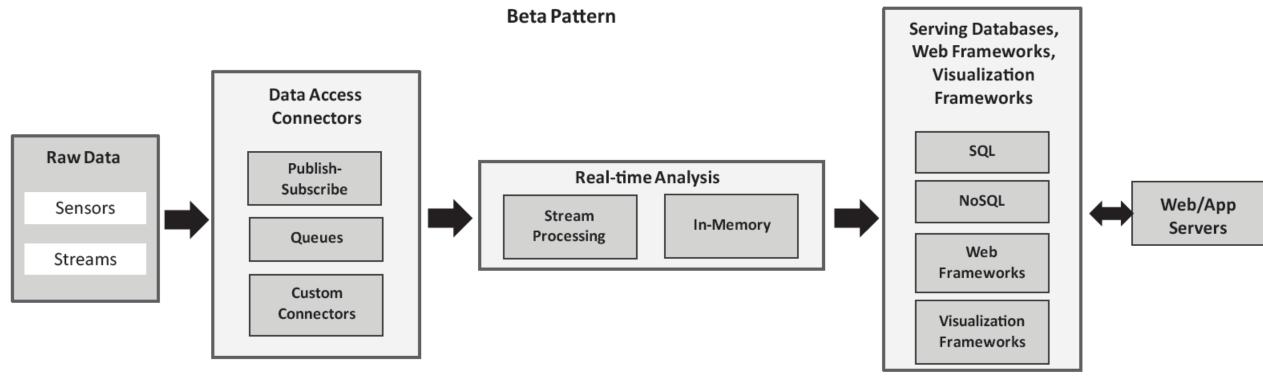
analysis Interactive Querying Analytic SQL Serving Databases, (Spark SQL) Web Frameworks, **Batch Analysis** Visualization Frameworks DAG MapReduce (Spark) (Hadoop) Data Access NoSQL (DynamoDB) Connectors Machine Script Web/App Raw Data Learning (Pig) Publish-Servers (Spark Mlib) Subscribe Web (Kafka) Weather Frameworks Monitoring (Django) System (Sensors) Source-Sink (Flume) Real-time Analysis Stream In-Memory Processing (Spark (Storm) Streaming) **Data Storage** Distributed Filesystem (HDFS) 47

Outline


- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns

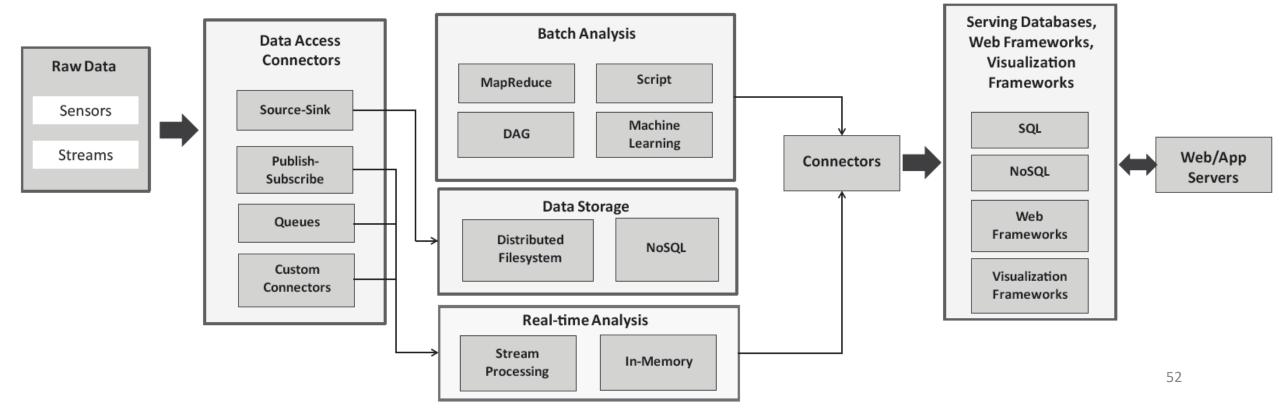
Analytics Patterns

- Four patterns that are tools and frameworks for:
 - collecting and ingesting data from various sources into the big data analytics infrastructure, distributed filesystems and non-relational (NoSQL) databases
 - data storage
 - processing frameworks for batch and real-time analytics
 - interactive querying
 - serving databases, and web and visualization


Alpha Pattern

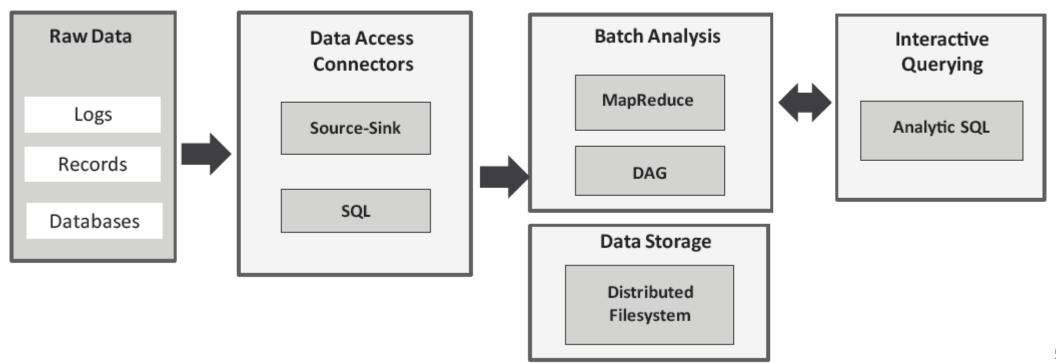
- For ingesting large volumes of data into a distributed filesystem
 - Web analytics, weather monitoring, epidemiological surveillance, and machine diagnosis

Beta Pattern


- For ingesting streaming data
 - Internet of Things applications and real-time monitoring applications

Gamma Pattern

- Combines batch and real-time analysis patterns
 - large number of IoT devices



Delta Pattern

- For interactive querying
 - web analytics, advertisement targeting, inventory management, production planning and control, and various types of enterprise applications

Delta Pattern

Complexity levels for analytics patterns

Alpha

↑	Security	 Apache Ranger: Authorization, authentication, auditing, data encryption, security administration Apache Knox Gateway: REST API gateway, LDAP and Active Directory Authentication, Federation/SSO, Authorization, Auditing 			
Levels	Fault Tolerance	 Distributed, fault tolerant and highly available architectures Data replication, automatic failovers 			
	Scalability	Scalable to thousands of nodes that can store and process several Petabytes of data	Scalable to thousands of nodes that can process very high throughput streaming data	Scalable to thousands of nodes that can process very high throughput streaming data	Scalable to thousands of nodes that can store and process several Petabytes of data
	Performance	Process large volumes of data with within timescales of few minutes	Process streaming data on the timescales of few milliseconds to seconds	Combines batch and real- time processing for streaming data, with timescales of milliseconds to seconds for real-time, and few minutes for batch	Interactively query large volumes of data with within timescales of few milliseconds to seconds
	Functionality	Batch Processing	Real time processing	Batch & Real-time processing	Interactive querying

Beta

Analytics Patterns

Gamma

Delta

Mapping of blocks in analytics patterns to AWS and Azure services

Data Access Connector	AWS Service	Azure Service
Publish-Subscribe	AWS Kinesis	Azure Event Hubs
Source-Sink	Flume on EMR	Flume on HDInsight
SQL	Sqoop on EMR	Sqoop on HDInsight
Queues	AWS SQS	Azure Queue Service
Custom Connectors	AWS IoT	Azure IoT Hub

Real-time Analysis	AWS Service	Azure Service
Stream Processing	Storm cluster on AWS EC2	Storm on Azure HDInsight, Azure Stream Analytics
In-Memory Processing	Spark on AWS EMR	Spark on Azure HDInsight

Data Storage	AWS Service	Azure Service
Distributed	HDFS on	HDFS on
Filesystem	AWSEMR	Azure HDInsight
NoSQL	AWS DynamoDB	Azure DocumentDB

Batch Analysis	AWS Service	Azure Service
MapReduce	Hadoop on AWS EMR	Hadoop on Azure HDInsight
Script	Pig on AWS EMR	Pig on Azure HDInsight
DAG	Spark on AWS EMR	Spark on Azure HDInsight
Machine Learning	Spark MLlib on AWS EMR, AWS Machine Learning	Spark MLlib on Azure HDInsight, Azure Machine Learning

Serving Databases, Web & Visualization Frameworks	AWS Service	Azure Service
SQL	AWS RDS	Azure SQL DB
NoSQL	AWS DynamoDB	Azure DocumentDB
Web Framework	Django on AWS EC2 instance	Django on Azure Virtual Machines instance
Visualization Framework	Lightning, Pygal, Seaborn, on AWS Virtual Machines instance	Lightning, Pygal, Seaborn, on Azure Virtual Machines instance, Azure Power BI

Summary

- What is Analytics?
- What is Big Data?
- Characteristics of Big Data
- Domain Specific Examples of Big Data
- Analytics Flow for Big Data
- Big Data Stack
- Mapping Analytics Flow to Big Data Stack
- Case Study: Weather Data Analysis
- Analytics Patterns