
NoSQL Databases

Prof. Gheith Abandah

1

Reference

• Chapter 4: NoSQL

• Arshdeep Bahga and Vijay Madisetti, Big Data Science and
Analytics: A Hands-On Approach, 2019.
• Web site: http://www.hands-on-books-series.com/

2

http://www.hands-on-books-series.com/

Outline

• Introduction

• Key-value databases

• Document databases

• Column family databases

• Graph databases

• Summary

3

Introduction

• Non-relational databases (NoSQL) are becoming popular with the
increasing use of cloud computing services.

• They have better horizontal scaling capability and improved
performance for big data at the cost of having less rigorous
consistency models.

• Optimized for fast retrieval and appending operations on records.

4

Outline

• Introduction

• Key-value databases

• Document databases

• Column family databases

• Graph databases

• Summary

5

Key-Value Databases

• These databases store data in the form of key-value pairs.

• The database uses unique keys to determine where the values should
be stored.

• Hashing is used for determining the partitions for the keys.

• The values can be virtually of any type.

• Unlike relational databases, there are no constraints of fixed schemas
and columns.

• Some key-value databases support tables, buckets or collections to
create separate namespaces for the keys.

6

Amazon DynamoDB

• Scalable, reliable and high-
performance key-value DB.

• A DynamoDB table is a
collection of items and each
item is a collection of
attributes (k, v).

• The primary key consists of:
• Partition key that hashes the

partition
• Optional sort key within the

partition

7

Main operations

• Put Item

• Query

• Scan

item = table.put_item(data={

‘customerID’:row[0],

‘name’:row[1],

‘address’: row[2], …

},overwrite=True)

result = table.query_2(

customerID__eq = ’1623072020799’)

result = table.scan(

country__eq =’India’)

8

Outline

• Introduction

• Key-value databases

• Document databases

• Column family databases

• Graph databases

• Summary

9

Document Databases

• Store semi-structured data in the
form of documents which are
encoded in different standards
such as JSON and XML.

• One collection’s documents have
similar fields.

• They allow efficiently querying the
documents based on the attribute
values in the documents.

• All data that needs to be retrieved
together is stored in one
document.

10

MongoDB

• Is a powerful, flexible and highly scalable document database
system.

• Is designed for web applications and serving database for data
analytics applications.

• A document includes a JSON-like set of key-value pairs.

• Documents are grouped together to form collections. Collections can
have documents with different sets of key-value pairs.

• Collections are organized into databases, and there can be multiple
databases running on a single MongoDB instance.

11

MongoDB Python Command Examples

Insert an item

collection.insert_one(item)

Retrieve all items

results = db.collection.find()

for item in results:

print(item)

Find an item

results = collection.find({"title" : "Motorola Moto G"})

for item in results:

print(item)
12

Outline

• Introduction

• Key-value databases

• Document databases

• Column family databases

• Graph databases

• Summary

13

Column Family Databases

• Support high-throughput reads and writes and have distributed and
highly available architectures.

• In column family databases the basic unit of data storage is a column,
which has a name and a value.

• A collection of columns make up a row which is identified by a row-
key.

• Columns are grouped together into columns families.

• The number of columns can vary across different rows.

• All information related to an entity can be retrieved by reading a
single row.

14

HBase

• Scalable, distributed, column-
family database that provides
structured data storage for large
tables.

• A table consists of rows indexed by
the row key.

• Each row includes multiple column
families.

• Each column includes multiple
cells which are timestamped.

• HBase tables are indexed by the
row key, column key and
timestamp.

15

HBase

• Columns families are declared at the time of creation of the table and
cannot be changed later.

• Columns can be added dynamically.

• HBase is:
• Sparse: not all row/column entries are present
• Distributed: tables are partitioned based on row keys into regions.
• Persistent: Not temporary
• Multi-dimensional: A key includes Table, RowKey, ColumnFamily, Column,

TimeStamp
• Sorted Map: Rows are sorted by the row key. Columns in a column family are

sorted by the column key.

16

HBase Architecture

• Multiple region
servers/regions

• The Master is responsible for
maintaining the meta-data
and assignment of regions to
servers.

• The Zookeeper coordinates
the distributed state.

• HFiles and HLogs are
persistent and MemStore and
Block Cache improve
performance.

17

HBase Operations

• Put: adds a new entry.

• Get: returns values for a given
row key.

• Scan: returns values for a range
of row keys.

• Delete: adds a special marker
called Tombstone to an entry.
Entries marked with Tombstones
are removed during the
compaction process.

Put

table.put(‘row-1’,

‘details:name’: ‘Cloud Book’)

Get

row = table.row(‘row-1’)

print(row[‘details:name’])

Scan

for key, data in table.scan():

print(key, data)

Delete row

row = table.delete(‘row-1’)

18

Outline

• Introduction

• Key-value databases

• Document databases

• Column family databases

• Graph databases

• Summary

19

Graph Databases

• Designed for storing data that has graph structure with nodes and
edges.

• Nodes represent the entities in the data model and have attributes.

• Edges are the relationships between the entities.

• Examples: Author → Book, Ali ↔ Wafa, A – path – B

• Useful in social media, financial, networking, enterprise
applications.

• Model relationships in the form of links between the nodes; no need
for join operations.

20

Neo4j

• Provides support for Atomicity,
Consistency, Isolation, Durability
(ACID).

• For create, read, update and
delete (CRUD) operations, Neo4j
provides a query language called
Cypher.
• Create a node or a relationship

• Query for a node or a label

21

Outline

• Introduction

• Key-value databases

• Document databases

• Column family databases

• Graph databases

• Summary

22

Summary

23

