NoSQL Databases

Prof. Gheith Abandah

Big Data Science

Reference & Analytics

A Hands-On Approach

* Chapter 4: NoSQL

Arshdeep Bahga » Vijay Madisetti

* Arshdeep Bahga and Vijay Madisetti, Big Data Science and
Analytics: A Hands-On Approach, 2019.

* Web site: http://www.hands-on-books-series.com/

http://www.hands-on-books-series.com/

Outline

* Introduction

* Key-value databases

* Document databases

* Column family databases
* Graph databases

* Summary

Introduction

* Non-relational databases (NoSQL) are becoming popular with the
increasing use of cloud computing services.

* They have better horizontal scaling capability and improved
performance for big data at the cost of having less rigorous
consistency models.

* Optimized for fast retrieval and appending operations on records.

Outline

* Key-value databases

* Document databases

* Column family databases
* Graph databases

* Summary

Key-Value Databases

* These databases store data in the form of key-value pairs.

* The database uses unique keys to determine where the values should
be stored.

* Hashing is used for determining the partitions for the keys.

* The values can be virtually of any type.

e Unlike relational databases, there are no constraints of fixed schemas
and columns.

* Some key-value databases support tables, buckets or collections to
create separate namespaces for the keys.

Amazon DynamoDB

Application

Application writes the data

* Scalable, reliable and high-
performance key-value DB. Hash Function

° A Dyna mo D B ta ble |S a Partition for the data is determined
by passing the partition key value

collection of items and each o the hash function
item is a collection of
attributes (k, v).

* The primary key consists of:

 Partition key that hashes the ! |
partition

* Optlppal sort key within the 161305173 | {name: 'Ivor Merritt’, address: ‘Ap #527-9960 Vel St.,
pPa rtition city: ‘Lauw’,zip: "5624’,country: ‘Peru’}

162307206 |{name: Cade Nguyen’, address: ‘486, 6221 Et St.,
city: ‘Barnstaple’,zip: '10903’,country: "Ukraine’}

Main operations

* Put Item

* Query
* Scan

item = table.put_item(data={
‘customerID’ :row[0],
“name’ :row[1],
‘address’: row[2], ..
},overwrite=True)

result = table.query_ 2(
customerID__eq = ’1623072020799°)

result = table.scan(
country eq =’India’)

Outline

* Document databases

* Column family databases
* Graph databases

* Summary

Document Databases

I
* Store semi-structured data in the ssfdfsosesfeseratagsssy

"title" : "Motorola Moto G (3rd Generation)",

form of documents which are “features": | |
encoded in different standards g anced warer resistance”
such as JSON and XML. "Sin HD display",
. ::Quad core procesl?ing power",
* One collection’s documents have omp rear camera’,
similar fields. "4G TE Speed”
I,
* They allow efficiently querying the ‘specfcations®:{
. olor" : "Black",
documents based on the attribute “Size" : 16 GB",
values in the documents. LT DA e
ight":"5.4 ounces
* All data that needs to be retrieved ! et 219,99
together is stored in one : S i
56fd504d849f6367af489538
document' "title" : "Canon EOS Rebel T5",
"features" : [

10

MongoDB

* Is a powerful, flexible and highly scalable document database
system.

* |s desighed for web applications and serving database for data
analytics applications.

* A document includes a JSON-like set of key-value pairs.

* Documents are grouped together to form collections. Collections can
have documents with different sets of key-value pairs.

 Collections are organized into databases, and there can be multiple
databases running on a single MongoDB instance.

11

MongoDB Python Command Examples

collection.insert_one(item)

results = db.collection.find()
for item in results:
print(item)

results = collection.find({"title" : "Motorola Moto G"})
for item in results:

print(item)

Outline

* Column family databases
* Graph databases
* Summary

Column Family Databases

e Support high-throughput reads and writes and have distributed and
highly available architectures.

* In column family databases the basic unit of data storage is a column,
which has a name and a value.

* A collection of columns make up a row which is identified by a row-
key.

* Columns are grouped together into columns families.
* The number of columns can vary across different rows.

* All information related to an entity can be retrieved by reading a
single row.

14

HBase

e Scalable, distributed, column-
family database that provides
structured data storage for large
tables.

* A table consists of rows indexed by
the row key.

* Each row includes multiple column
families.

e Each column includes multiple
cells which are timestamped.

* HBase tables are indexed by the
row key, column key and
timestamp.

Table

RowKey-1

RowKey-2

RowKey-3

ColumnFamily-1

Column-1 Column-2

Column-1 Column-2

ColumnFamily-2

Column-3

Column-4

15

HBase

* Columns families are declared at the time of creation of the table and
cannot be changed later.

* Columns can be added dynamically.

* HBase is:
 Sparse: not all row/column entries are present
 Distributed: tables are partitioned based on row keys into regions.
* Persistent: Not temporary

* Multi-dimensional: A key includes Table, RowKey, ColumnFamily, Column,
TimeStamp

* Sorted Map: Rows are sorted by the row key. Columns in a column family are
sorted by the column key.

16

HBase Architecture

* Multiple region
servers/regions

 The Master is responsible for

Client

Zookeeper

Quorum

N

HBase Master

maintaining the meta-data
and assignment of regions to
servers.

* The Zookeeper coordinates
the distributed state.

* HFiles and HLogs are
persistent and MemStore and

Region Server

Region Server

Region
MemStore
StoreFile StoreFile StoreFile
(HFile) (HFile) (HFile)
Block Cache

Region
MemStore
StoreFile StoreFile StoreFile
(HFile) (HFile) (HFile)
Block Cache

Write Ahead Log (HLog)

Write Ahead Log (HLog)

Block Cache improve
performance.

17

HBase Operations

* Put: adds a new entry.

* Get: returns values for a given
row key.

* Scan: returns values for a range
of row keys.

* Delete: adds a special marker
called Tombstone to an entry.
Entries marked with Tombstones
are removed during the
compaction process.

table.put(‘row-1°,
‘details:name’: ‘Cloud Book’)

row = table.row(‘row-1’)
print(row[‘details:name’])

for key, data in table.scan():
print(key, data)

row = table.delete(‘row-1°)

Outline

* Graph databases
* Summary

Graph Databases

* Designed for storing data that has graph structure with nodes and
edges.

* Nodes represent the entities in the data model and have attributes.
* Edges are the relationships between the entities.
* Examples: Author - Book, Ali <> Wafa, A—path —B

* Useful in social media, financial, networking, enterprise
applications.

* Model relationships in the form of links between the nodes; no need
for join operations.

20

Neo4j

* Provides support for Atomicity, o
Consistency, Isolation, Durability (oote auantiy)
(ACID).

* For create, read, update and
delete (CRUD) operations, Neo4;
provides a query language called
Cypher.

* Create a node or a relationship
* Query for a node or a label

Product
Customer

Title

Name
Price

Address

City Color

Country Size

Zp Weight

Other specs
Rates
(Rating)

21

Outline

* Summary

Summary

Key-Value DB Document DB Column Family DB Graph DB
Data model | Key-value pairs Documents (having key- | Columns having names | Graphs comprising of
uniquely identified by | value pairs) uniquely and values, grouped nodes and
keys identified by document | into column families relationships
IDs
Querying Query items by key, Query documents by Query rows by key, Graph query language
Database specific APIs | document-ID, Database | Database specific APIs |such as Cypher,
specific APls Database specific APls
Use Applicationsinvolving | Applicationsinvolving Applicationsinvolving Applicationsinvolving
frequent small reads data in the form of large volumes of data, | data on entities and
and writes with simple | documentsencoded in high throughput reads | relationships between
data models formats such as JSON or | and writes, the entities, spatial
XML, documents can high availability data
have varying number of | requirements
attributes
Examples DynamoDB, MongoDB, HBase, Neodj,
Cassandra CouchDB Google BigTable AllegroGraph 23

