
Data Acquisition

Prof. Gheith Abandah

1

Reference

• Chapter 5: Data Acquisition

• Arshdeep Bahga and Vijay Madisetti, Big Data Science and
Analytics: A Hands-On Approach, 2019.
• Web site: http://www.hands-on-books-series.com/

2

http://www.hands-on-books-series.com/

Outline

• Introduction

• Publish - Subscribe Messaging Frameworks

• Big Data Collection Systems

• Messaging Queues

• Custom Connectors

3

Introduction

• Need to collect data from various data sources:
• into a distributed file system or a NoSQL database for batch analysis of data,

• or to connect the data sources to stream or in-memory processing
frameworks for real-time analysis of data.

4

Data Source Types

1. Batch data sources
• Files

• Logs

• Relational databases

2. Real-time data sources
• Machines generating sensor data

• Internet of Things (IoT) systems sending real-time data

• Social media feeds

• Stock market feeds

5

Outline

• Introduction

• Publish - Subscribe Messaging Frameworks

• Big Data Collection Systems

• Messaging Queues

• Custom Connectors

6

Publish - Subscribe Messaging Frameworks

• Suitable for high velocity data

• Feature low overhead and low
latency

• Data can be pushed or pulled by
the consumers

• Publish-subscribe messaging
frameworks
• Apache Kafka

• Amazon Kinesis

7

Apache Kafka Components

• Topic: is a user-defined category to
which messages are published.

• Producer: is a component that
publishes messages to one or more
topics.

• Consumer: is a component that
subscribes to one or more topics and
processes the messages.

• Broker: is a component that manages
the topics and handles the
persistence, partitioning, and
replication of the data.

• A Kafka cluster can have multiple
Kafka Brokers (or servers), with each
Broker managing multiple topics.

8

Kafka Producer for sending messages

9

import time
from datetime import datetime
from kafka.client import KafkaClient
from kafka.producer import Producer

client = KafkaClient("localhost:6667")
producer = Producer(client)

while True:
ts=time.time()
timestamp = datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
data = "This is a test string generated at: " + str(timestamp)
producer.send_messages('topic-1', data)
time.sleep(1)

Kafka Consumer

10

from kafka.client import KafkaClient
from kafka.consumer import Consumer

client = KafkaClient("localhost:6667")
consumer = Consumer(client, "topic-1")

for message in consumer:
Print message object
print(message)
Print only message value
print(message.message.value)

Outline

• Introduction

• Publish - Subscribe Messaging Frameworks

• Big Data Collection Systems

• Messaging Queues

• Custom Connectors

11

Big Data Collection Systems

• Big data collection systems allow collecting, aggregating and moving
data:

• From various sources
• Server logs

• Databases

• Social media

• Streaming sensor data from Internet of Things devices

• Into a centralized data store
• Distributed file system

• NoSQL database

12

Example Frameworks

• Apache Flume

• Apache Sqoop

13

Apache Flume

• Distributed, reliable, and available system for collecting, aggregating,
and moving large amounts of data from different data sources into a
centralized data store.

• Source: receives or polls for data from external sources.

• Channel: a source transmits data to one or more channels.

• Sink: drains data from a channel to a data store.

• Agent: collection of sources, channels and sinks.

• Event: is a unit of data flow having a payload and an optional set of
attributes. Flume sources consume events generated by external
sources.

14

Flume data flow examples

15

Generic definition of a Flume agent
<agent name>.sources = <source-1> <source-2> ... <source-N>
<agent name>.channels = <channel-1> <channel-2> ... <channel-N>
<agent name>.sinks = <sink-1> <sink-2> ... <sink-N>
Define sources
<agent name>.sources.<source-1>.type = <source type>
:
Define sinks
<agent name>.sinks.<sink-1>.type = <sink type>
:
Define channels
myagent.channels.<channel-1>.type = <channel type>
:
Bind the sources and sinks to the channels
myagent.sources.<source-1>.channels = <channel-1>
myagent.sinks.<sink-1>.channel = <channel-1>
:

16

The configuration file lists
the sources, channels
and sinks for the agent.
Then defines each
source, channel and sink.
Finally, the binds sources,
channels and sinks.

Apache Flume Sources and Sinks

17

Example Flume Sources

• Spooling Directory Source: ingests files such as log files. A spool
directory is setup on the disk from where the Spooling Directory
source ingests the files.

myagent.sources = source1

myagent.sources.source1.type = spooldir

myagent.sources.source1.spoolDir = /var/log/apache/flumeSpool

• NetCat Source: listens to a specific port to which the data is written
by a NetCat client, which is a simple Unix utility that uses TCP or UDP
protocol.

myagent.sources = source1

myagent.sources.source1.type = netcat

myagent.sources.source1.bind = 0.0.0.0

myagent.sources.source1.port = 6666 18

Example Flume Sink

• HDFS Sink: The Hadoop Distributed File System (HDFS) Sink drains
events from a channel to HDFS.

myagent.sinks = sink1

myagent.sinks.sink1.type = hdfs

myagent.sinks.sink1.hdfs.fileType = DataStream

myagent.sinks.sink1.hdfs.path = /flume/events

19

Outline

• Introduction

• Publish - Subscribe Messaging Frameworks

• Big Data Collection Systems

• Messaging Queues

• Custom Connectors

20

Messaging Queues

• Messaging queues are useful for push-pull messaging where the
producers push data to the queues, and the consumers pull the data
from the queues.

• The producers and consumers do not need to be aware of each
other.

• Messaging queues allow decoupling of producers of data from the
consumers.

• Message queuing systems are based on
• Advanced Message Queuing Protocol (AMQP)

• ZeroMQ Message Transfer Protocol (ZMTP)

21

Example Frameworks

• RabbitMQ

• ZeroMQ

• RestMQ

• Amazon SQS

22

RabbitMQ

• RabbitMQ implements the AMQP.

• AMQP clients can either be producers or consumers.

• The clients can communicate with each other through brokers.

• The producers publish messages to the exchanges, which then
distribute the messages to queues.

• AMQP brokers provide four types of exchanges:
• Direct exchange (for point-to-point messaging)
• Fanout exchange (for multicast messaging)
• Topic exchange (for publish-subscribe messaging)
• Header exchange (that uses header attributes for making routing decisions)

23

Outline

• Introduction

• Publish - Subscribe Messaging Frameworks

• Big Data Collection Systems

• Messaging Queues

• Custom Connectors

24

Custom Connectors

• Custom connectors and web services for acquiring data from data
producers can be developed to meet the application requirements.

• Example Frameworks
• REST-based Connectors

• WebSocket-based Connectors

• MQTT-based Connectors

• Amazon IoT

• Azure IoT Hub

25

REST-based Connectors

• Representational state transfer (REST) is a software architectural
style which uses web services with resources in a textual
representation, stateless protocol, and predefined operations.

• Producers publish data to the connector using HTTP POST requests
which contain the data payload.

• REST-based connector enables any client that can make HTTP
requests to send data to the connector.

26

Summary

• Introduction

• Publish - Subscribe Messaging Frameworks

• Big Data Collection Systems

• Messaging Queues

• Custom Connectors

27

