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Reference

• Chapter 8: Dimensionality Reduction

• Chapter 9: Unsupervised Learning Techniques

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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Dimensionality Reduction

• Many Machine Learning problems involve thousands or even millions
of features for each training instance.

• All these features make training extremely slow and make it much 
harder to find a good solution.

• This problem is often referred to as the curse of dimensionality.

• Dimensionality reduction approaches
• Drop not useful features

• Merge correlated features

• Projection and manifold

• Transform features
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Projection and Manifold
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Projection and Manifold
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• Simply projecting onto a plane may not 
give better solution.

• Projecting to a proper manifold is better.



Projection and Manifold

• The decision boundary may not 
always be simpler with lower 
dimensions.
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Principal Component Analysis (PCA)

• Is the most popular
dimensionality reduction 
algorithm.

• First it identifies the hyperplane
that lies closest to the data, and 
then it projects the data onto it.

• PCA identifies the axis that 
accounts for the largest amount 
of variance in the training set. 
Then it finds the next 
orthogonal axes that accounts 
for the largest amount of 
remaining variance.
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Principal Component Analysis (PCA)

• Use PCA to reduce the 
dimensionality of the dataset 
down to two dimensions.

• Instead of specifying the number 
of principal components you 
want to preserve, you can set 
n_components to be a float 
between 0.0 and 1.0, indicating 
the ratio of variance you wish to 
preserve.

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X2D = pca.fit_transform(X)

pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)
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Unsupervised Learning

If intelligence was a cake, unsupervised learning would be the cake, 
supervised learning would be the icing on the cake, and reinforcement 

learning would be the cherry on the cake.

Yann LeCun

• Example: System that takes a few pictures of each item on a 
manufacturing production line and detects which items are defective.
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Clustering

• The task of identifying similar instances and assigning them to 
clusters, i.e., groups of similar instances.

• Classification (left) versus clustering (right)
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Clustering Applications

• Customer segmentation: useful for recommender systems.

• Data analysis: discover clusters of similar instances as it is often 
easier to analyze clusters separately.

• Dimensionality reduction: find affinity features to the found clusters

• Anomaly detection: any instance that has a low affinity to all the 
clusters is likely to be an anomaly.

• Semi-supervised learning: perform clustering and propagate the 
labels to all the instances in the same cluster.

• Search engines for images

• Image segmentation
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K-Means

• Quick and efficient
algorithm

• Scale before 
clustering

• Need to specify the 
number of clusters
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K-Means

• Cluster to 5 clusters

from sklearn.cluster import KMeans

k = 5

kmeans = KMeans(n_clusters=k)

y_pred = kmeans.fit_predict(X)

y_pred

array([4, 0, 1, ..., 2, 1, 0],

dtype=int32)

# Hard clustering:

X_new = np.array([[0, 2], [-3, 3]])

kmeans.predict(X_new)

array([1, 2], dtype=int32)
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K-Means

kmeans.cluster_centers_

array([[-2.80389616, 1.80117999],

[ 0.20876306, 2.25551336],

[-2.79290307, 2.79641063],

[-1.46679593, 2.28585348],

[-2.80037642, 1.30082566]])

# Soft clustering, a score per
# cluster:

kmeans.transform(X_new)

array([[2.81093633, 0.32995317,

2.9042344 , 1.49439034,

2.88633901],

[1.21475352, 3.29399768,

0.29040966, 1.69136631,

1.71086031])
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technique.



K-Means

• It is important to specify the 
right number of clusters k.

• Find k that gives highest mean 
silhouette coefficient.

from sklearn.metrics import

silhouette_score

silhouette_score(X, kmeans.labels_)

0.655517642572828
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DBSCAN

• Defines clusters as continuous 
regions of high density.

• Works well if all the clusters are 
dense enough, and they are well 
separated by low-density 
regions.

• Behaves well when the clusters 
have varying sizes or non-
spherical shapes.

• Algorithm
• For each instance, counts how many 

instances are located within a small 
distance ε-neighborhood.

• If an instance has at least min_samples
instances in its ε-neighborhood, then it is 
considered a core instance.

• All instances in the neighborhood of a core 
instance belong to the same cluster. This 
may include other core instances; 
therefore, a long sequence of neighboring 
core instances forms a single cluster.

• Any instance that is not a core instance and 
does not have one in its neighborhood is 
considered an anomaly (-1).
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DBSCAN

• Cluster the moons dataset

from sklearn.cluster import DBSCAN

from sklearn.datasets import

make_moons

X, y = make_moons(n_samples=1000,

noise=0.05)

dbscan = DBSCAN(eps=0.2,

min_samples=5)

dbscan.fit(X)
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DBSCAN

• DBSCAN class does not have a predict() method.

• Can use other classifiers.

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier()

knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])

X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])

knn.predict(X_new)

array([1, 0, 1, 0])
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Gaussian Mixtures

• A Gaussian mixture model (GMM) is a probabilistic model that 
assumes that the instances were generated from a mixture of several 
Gaussian distributions whose parameters are unknown.

• Scikit-Learn’s GaussianMixture class, given the dataset X, can 
estimate the weights ϕ and all the distribution parameters μ(1) to μ(k)

and Σ(1) to Σ(k). 

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, n_init=10)

gm.fit(X)
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Gaussian Mixtures

gm.converged_

True

gm.n_iter_

3

gm.weights_

array([0.20965228, 0.4000662,

0.39028152])

gm.means_

array([[ 3.39909717, 1.05933727],

[-1.40763984, 1.42710194],

[ 0.05135313, 0.07524095]])

gm.covariances_

array([[[ 1.14807234, -0.03270354],

[-0.03270354, 0.95496237]],

[[ 0.63478101, 0.72969804],

[ 0.72969804, 1.1609872 ]],

[[ 0.68809572, 0.79608475],

[ 0.79608475, 1.21234145]]])
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Anomaly Detection using Gaussian Mixtures

• Any instance located in a low-
density region can be 
considered an anomaly.

• Identify the outliers using the 
4th percentile lowest density as 
the threshold.

densities = gm.score_samples(X)

density_threshold = np.percentile(

densities, 4)

anomalies = X[densities <

density_threshold]
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Selecting the Number of Components

• Minimize the Bayesian 
information criterion (BIC) or 
the Akaike information 
criterion (AIC).

gm.bic(X)

8189.74345832983

gm.aic(X)

8102.518178214792
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Exercises

8.9. Load the MNIST dataset (introduced in Chapter 3) and split it into 
a training set and a test set (take the first 60,000 instances for 
training, and the remaining 10,000 for testing). Train a Random 
Forest classifier on the dataset and time how long it takes, then 
evaluate the resulting model on the test set. Next, use PCA to 
reduce the dataset’s dimensionality, with an explained variance 
ratio of 95%. Train a new Random Forest classifier on the reduced 
dataset and see how long it takes. Was training much faster? Next 
evaluate the classifier on the test set: how does it compare to the 
previous classifier?
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Exercises

9.3. Describe two techniques to select the right number of clusters 
when using K-Means.
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Exercises

9.10. The classic Olivetti faces dataset contains 400 grayscale 64 × 64–pixel 
images of faces. Each image is flattened to a 1D vector of size 4,096. 40 
different people were photographed (10 times each), and the usual task 
is to train a model that can predict which person is represented in each 
picture. Load the dataset using the 
sklearn.datasets.fetch_olivetti_faces() function, then split it 
into a training set, a validation set, and a test set (note that the dataset 
is already scaled between 0 and 1). Since the dataset is quite small, you 
probably want to use stratified sampling to ensure that there are the 
same number of images per person in each set. Next, cluster the images 
using KMeans, and ensure that you have a good number of clusters 
(using one of the techniques discussed in this chapter). Visualize the 
clusters: do you see similar faces in each cluster?
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