
Unsupervised Learning and
Clustering

Prof. Gheith Abandah

1

Reference

• Chapter 8: Dimensionality Reduction

• Chapter 9: Unsupervised Learning Techniques

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

3

Dimensionality Reduction

• Many Machine Learning problems involve thousands or even millions
of features for each training instance.

• All these features make training extremely slow and make it much
harder to find a good solution.

• This problem is often referred to as the curse of dimensionality.

• Dimensionality reduction approaches
• Drop not useful features

• Merge correlated features

• Projection and manifold

• Transform features

4

Projection and Manifold

5

Projection and Manifold

6

• Simply projecting onto a plane may not
give better solution.

• Projecting to a proper manifold is better.

Projection and Manifold

• The decision boundary may not
always be simpler with lower
dimensions.

7

Principal Component Analysis (PCA)

• Is the most popular
dimensionality reduction
algorithm.

• First it identifies the hyperplane
that lies closest to the data, and
then it projects the data onto it.

• PCA identifies the axis that
accounts for the largest amount
of variance in the training set.
Then it finds the next
orthogonal axes that accounts
for the largest amount of
remaining variance.

8

Principal Component Analysis (PCA)

• Use PCA to reduce the
dimensionality of the dataset
down to two dimensions.

• Instead of specifying the number
of principal components you
want to preserve, you can set
n_components to be a float
between 0.0 and 1.0, indicating
the ratio of variance you wish to
preserve.

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X2D = pca.fit_transform(X)

pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)

9

3-D

MNIST

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

10

Unsupervised Learning

If intelligence was a cake, unsupervised learning would be the cake,
supervised learning would be the icing on the cake, and reinforcement

learning would be the cherry on the cake.

Yann LeCun

• Example: System that takes a few pictures of each item on a
manufacturing production line and detects which items are defective.

11

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

12

Clustering

• The task of identifying similar instances and assigning them to
clusters, i.e., groups of similar instances.

• Classification (left) versus clustering (right)

13

Clustering Applications

• Customer segmentation: useful for recommender systems.

• Data analysis: discover clusters of similar instances as it is often
easier to analyze clusters separately.

• Dimensionality reduction: find affinity features to the found clusters

• Anomaly detection: any instance that has a low affinity to all the
clusters is likely to be an anomaly.

• Semi-supervised learning: perform clustering and propagate the
labels to all the instances in the same cluster.

• Search engines for images

• Image segmentation

14

K-Means

• Quick and efficient
algorithm

• Scale before
clustering

• Need to specify the
number of clusters

15

K-Means

• Cluster to 5 clusters

from sklearn.cluster import KMeans

k = 5

kmeans = KMeans(n_clusters=k)

y_pred = kmeans.fit_predict(X)

y_pred

array([4, 0, 1, ..., 2, 1, 0],

dtype=int32)

Hard clustering:

X_new = np.array([[0, 2], [-3, 3]])

kmeans.predict(X_new)

array([1, 2], dtype=int32)

16

K-Means

kmeans.cluster_centers_

array([[-2.80389616, 1.80117999],

[0.20876306, 2.25551336],

[-2.79290307, 2.79641063],

[-1.46679593, 2.28585348],

[-2.80037642, 1.30082566]])

Soft clustering, a score per
cluster:

kmeans.transform(X_new)

array([[2.81093633, 0.32995317,

2.9042344 , 1.49439034,

2.88633901],

[1.21475352, 3.29399768,

0.29040966, 1.69136631,

1.71086031])

17

Can be a dimensionality reduction
technique.

K-Means

• It is important to specify the
right number of clusters k.

• Find k that gives highest mean
silhouette coefficient.

from sklearn.metrics import

silhouette_score

silhouette_score(X, kmeans.labels_)

0.655517642572828

18

https://en.wikipedia.org/wiki/Silhouette_(clustering)

DBSCAN

• Defines clusters as continuous
regions of high density.

• Works well if all the clusters are
dense enough, and they are well
separated by low-density
regions.

• Behaves well when the clusters
have varying sizes or non-
spherical shapes.

• Algorithm
• For each instance, counts how many

instances are located within a small
distance ε-neighborhood.

• If an instance has at least min_samples
instances in its ε-neighborhood, then it is
considered a core instance.

• All instances in the neighborhood of a core
instance belong to the same cluster. This
may include other core instances;
therefore, a long sequence of neighboring
core instances forms a single cluster.

• Any instance that is not a core instance and
does not have one in its neighborhood is
considered an anomaly (-1).

19

Can detect anomalies

DBSCAN

• Cluster the moons dataset

from sklearn.cluster import DBSCAN

from sklearn.datasets import

make_moons

X, y = make_moons(n_samples=1000,

noise=0.05)

dbscan = DBSCAN(eps=0.2,

min_samples=5)

dbscan.fit(X)

20

DBSCAN

• DBSCAN class does not have a predict() method.

• Can use other classifiers.

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier()

knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])

X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])

knn.predict(X_new)

array([1, 0, 1, 0])

21

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

22

Gaussian Mixtures

• A Gaussian mixture model (GMM) is a probabilistic model that
assumes that the instances were generated from a mixture of several
Gaussian distributions whose parameters are unknown.

• Scikit-Learn’s GaussianMixture class, given the dataset X, can
estimate the weights ϕ and all the distribution parameters μ(1) to μ(k)

and Σ(1) to Σ(k).

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, n_init=10)

gm.fit(X)

23

Gaussian Mixtures

gm.converged_

True

gm.n_iter_

3

gm.weights_

array([0.20965228, 0.4000662,

0.39028152])

gm.means_

array([[3.39909717, 1.05933727],

[-1.40763984, 1.42710194],

[0.05135313, 0.07524095]])

gm.covariances_

array([[[1.14807234, -0.03270354],

[-0.03270354, 0.95496237]],

[[0.63478101, 0.72969804],

[0.72969804, 1.1609872]],

[[0.68809572, 0.79608475],

[0.79608475, 1.21234145]]])
24

Anomaly Detection using Gaussian Mixtures

• Any instance located in a low-
density region can be
considered an anomaly.

• Identify the outliers using the
4th percentile lowest density as
the threshold.

densities = gm.score_samples(X)

density_threshold = np.percentile(

densities, 4)

anomalies = X[densities <

density_threshold]

25

Selecting the Number of Components

• Minimize the Bayesian
information criterion (BIC) or
the Akaike information
criterion (AIC).

gm.bic(X)

8189.74345832983

gm.aic(X)

8102.518178214792

26

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

27

Exercises

8.9. Load the MNIST dataset (introduced in Chapter 3) and split it into
a training set and a test set (take the first 60,000 instances for
training, and the remaining 10,000 for testing). Train a Random
Forest classifier on the dataset and time how long it takes, then
evaluate the resulting model on the test set. Next, use PCA to
reduce the dataset’s dimensionality, with an explained variance
ratio of 95%. Train a new Random Forest classifier on the reduced
dataset and see how long it takes. Was training much faster? Next
evaluate the classifier on the test set: how does it compare to the
previous classifier?

28

Exercises

9.3. Describe two techniques to select the right number of clusters
when using K-Means.

29

Exercises

9.10. The classic Olivetti faces dataset contains 400 grayscale 64 × 64–pixel
images of faces. Each image is flattened to a 1D vector of size 4,096. 40
different people were photographed (10 times each), and the usual task
is to train a model that can predict which person is represented in each
picture. Load the dataset using the
sklearn.datasets.fetch_olivetti_faces() function, then split it
into a training set, a validation set, and a test set (note that the dataset
is already scaled between 0 and 1). Since the dataset is quite small, you
probably want to use stratified sampling to ensure that there are the
same number of images per person in each set. Next, cluster the images
using KMeans, and ensure that you have a good number of clusters
(using one of the techniques discussed in this chapter). Visualize the
clusters: do you see similar faces in each cluster?

30

Summary

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

31

