
Reinforcement Learning

Prof. Gheith Abandah

1

Reference

• Chapter 18: Reinforcement Learning

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

3

Introduction

• YouTube Video: An introduction to Reinforcement Learning from
Arxiv Insights

https://youtu.be/JgvyzIkgxF0

4

https://youtu.be/JgvyzIkgxF0

1. Introduction – History

• RL started in 1950s

• 1992: IBM’s TD-Gammon, a Backgammon
playing program.

• 2013: DeepMind demonstrated a system that
learns to play Atari games from scratch.

• Use deep learning with raw pixels as inputs
and without any prior knowledge of the rules
of the games.

• 2014: Google bought DeepMind for $500M.

• 2016: AlphaGo beats Lee Sedol.

5

1. Introduction – Definition

• In Reinforcement Learning, a software agent makes observations and
takes actions within an environment, and in return it receives
rewards.

• Its objective is to learn to act in a way that will maximize its expected
long-term rewards.

• In short, the agent acts in the environment and learns by trial and
error to maximize its pleasure and minimize its pain.

6

1. Introduction – Examples

7

(a) robotics
(b) Ms. Pac-Man
(c) Go player
(d) thermostat
(e) automatic
trader

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

8

2. Policy Search
• The algorithm used by the software agent to determine its actions is

called its policy.

• The policy can be deterministic or stochastic.

• Policy search techniques: Brute force, Genetic algorithm, Policy
Gradient (PG), Q-Learning.

9

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

10

3. OpenAI Gym
• OpenAI Gym is a toolkit that provides simulated environments (Atari

games, board games, 2D and 3D physical simulations, …).

• OpenAI is a nonprofit AI research company funded in part by Elon
Musk. Got $1 billion investment from Microsoft.

>>> import gym

>>> env = gym.make("CartPole-v1")

>>> obs = env.reset()

>>> obs

array([-0.012586, -0.001566, 0.042077, -0.001805])

11

Cart position, cart speed,
pole angle, pole velocity

3. OpenAI Gym

• render() can also return the rendered image as a NumPy array.

>>> img = env.render(mode="rgb_array")

>>> img.shape # height, width, channels (3 = RGB)

(800, 1200, 3)

12

3. Balancing the pole

>>> action = 1 # accelerate right

>>> obs, reward, done, info = env.step(action)

>>> obs

array([-0.012617, 0.192928, 0.042041, -0.280921])

>>> reward

1.0

>>> done

False

>>> info

{} 13

The possible actions are integers 0
and 1, which represent accelerating

left (0) or right (1).

3. Balancing the pole

def basic_policy(obs):
angle = obs[2]
return 0 if angle < 0 else 1

totals = []
for episode in range(500):

episode_rewards = 0
obs = env.reset()
for step in range(200):

action = basic_policy(obs)
obs, reward, done, info = env.step(action)
episode_rewards += reward
if done:

break
totals.append(episode_rewards)

14

Accelerates left when
the pole is leaning left
and accelerates right

when the pole is
leaning right.

3. Balancing the pole

• Even with 500 tries, this policy never managed to keep the pole upright
for more than 68 consecutive steps.

>>> import numpy as np

>>> np.mean(totals), np.std(totals), np.min(totals),

np.max(totals)

(41.718, 8.858356280936096, 24.0, 68.0)

15

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

16

4. Neural Network Policies

• Takes an observation as input,
and outputs the probability for
each action

• We select an action randomly,
according to the estimated
probabilities.

• Explore and exploit

17

4. Neural Network Policy in Keras

Building a polity network is easy

import tensorflow as tf

from tensorflow import keras

n_inputs = 4 # == env.observation_space.shape[0]

model = keras.models.Sequential([

keras.layers.Dense(5, activation="elu",

input_shape=[n_inputs]),

keras.layers.Dense(1, activation="sigmoid"),

])

Training it is something else

18

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

19

5. The Credit Assignment Problem

• Rewards are typically sparse and
delayed.

• Credit assignment problem:
when the agent gets a reward, it
is hard for it to know which
actions should get credited (or
blamed) for it.

• Evaluate an action based on the
sum of all the rewards that come
after it, usually applying a
discount rate  at each step.

20

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

21

6. Q-Learning

• Reference: Keon Kim, Deep Q-Learning with Keras and Gym,
https://keon.io/deep-q-learning/

• Deep reinforcement learning (deep Q-learning) example to play a CartPole
game using Keras and Gym.

• Google’s DeepMind published Playing Atari with Deep Reinforcement
Learning where they introduced the algorithm Deep Q Network (DQN) in
2013.

• In DQN, the quality function Q is used to approximate the reward based on
a state. Q(s,a) calculates the expected future value from state s and
action a.

• A neural network is used to approximate the reward based on the state.

22

https://keon.io/deep-q-learning/
https://arxiv.org/abs/1312.5602

6. Q-Learning

• Carry out an action a, and observe the reward r and resulting new state s’.

• Calculate the maximum target Q and then discount it so that the future reward is
worth less than immediate reward by .

• Add the current reward to the discounted future reward to get the target value.

• Subtracting our current prediction from the target gives the loss.

• Squaring this value allows us to punish the large loss value more and treat the
negative values same as the positive values.

23

6. DQN – Imports and Definitions

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

EPISODES = 5000

24

6. DQN – Agent Class (1/4)

class DQNAgent:

def __init__(self, state_size, action_size):

self.state_size = state_size

self.action_size = action_size

self.memory = deque(maxlen=2000)

self.gamma = 0.95 # discount rate

self.epsilon = 1.0 # exploration rate

self.epsilon_min = 0.01 # min exploration rate

self.epsilon_decay = 0.995

self.learning_rate = 0.001

self.model = self._build_model()

25

6. DQN – Agent Class (2/4)

def _build_model(self):

model = Sequential()

model.add(Dense(24, input_dim=self.state_size,
activation='relu'))

model.add(Dense(24, activation='relu'))

model.add(Dense(self.action_size, activation='linear'))

model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))

return model

26

4

2

6. DQN – Agent Class (3/4)

def remember(self, state, action, reward, next_state, done):

Queue of previous experiences to re-train the model

self.memory.append((state, action, reward, next_state, done))

def act(self, state):

Returns an action randomly or from the model

if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)

act_values = self.model.predict(state)

return np.argmax(act_values[0])

27

6. DQN – Agent Class (4/4)

def replay(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for state, action, reward, next_state, done in
minibatch:

target = reward

if not done:

target = (reward + self.gamma * np.max(
self.model.predict(next_state)[0]))

target_f = self.model.predict(state)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1,
verbose=0)

if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay
28

Learn to predict
the reward

Replay()

trains the neural
net with
experiences in
the memory

6. DQN – Setup

if __name__ == "__main__":

env = gym.make('CartPole-v1')

state_size = env.observation_space.shape[0] # 4

action_size = env.action_space.n # 2

agent = DQNAgent(state_size, action_size)

done = False

batch_size = 32

29

6. DQN – Training
for e in range(EPISODES):

state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(5000):

action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:

print("episode: {}/{}, score: {}"
.format(e, EPISODES, time))

break
if len(agent.memory) > batch_size:

agent.replay(batch_size)

30

6. DQN – Results

31

Exercises

18.1. How would you define Reinforcement Learning? How is it different from
regular supervised or unsupervised learning?

18.2. Can you think of three possible applications of RL that were not mentioned in
this chapter?

18.For each of them, what is the environment? What is the agent? What are some
possible actions? What are the rewards?

18.3. What is the discount factor? Can the optimal policy change if you modify the
discount factor?

18.4. How do you measure the performance of a Reinforcement Learning agent?
18.5. What is the credit assignment problem? When does it occur? How can you

alleviate it?
18.6. What is the point of using a replay buffer?

32

Summary

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

33

